Synthetic study of marine lobane diterpenes: efficient synthesis of (+)-fuscol

Hiroshi Kosugi, Osamu Yamabe and Michiharu Kato*
Institute for Chemical Reaction Science, Tohoku University, Katahira, Aoba-ku, Sendai 980-77, Japan

As part of a synthetic study on marine natural products, the enantioselective synthesis of (+)-fuscol 4, a representative lobane diterpene, has been achieved in 10 steps and $c a .20 \%$ overall yield from $(4 R, 5 R)-1-$ acetoxy-4-isopropenyl-5-methyl-5-vinylcyclohex-1-ene 3 b , which itself has been prepared as a building block directed toward the asymmetric synthesis of natural products, in more than 40% overall yield from (+)-nopinone 1.

Introduction

We have been studying the enantioselective synthesis of natural products from $(1 R, 5 S)-(+)$-nopinone 1 , readily obtainable in

2a

2b

3a

3b
large quantities by ozonolysis of commercially available (-)- β pinene. ${ }^{1}$ In connection with the search for versatile building blocks directed toward natural product synthesis, we have recently reported that, starting with $(+)$-nopinone 1 as the common starting material, $(4 S, 5 S)$-1-acetoxy-4-isopropenyl-5-methyl-5-vinylcyclohex-1-ene 3a and its enantiomer ($4 R, 5 R$)-3b were readily prepared in more than 40% overall yields by an efficient chemical transformation to ($1 R, 4 S, 5 R$)-4,6,6-trimethyl-4-vinylbicyclo[3.1.1]heptan-2-one $\mathbf{2 a}$ and its enantiomer ($1 S, 4 R$, $5 S)$-2b, followed by $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$-promoted cyclobutane opening with little loss of optical purity, respectively. ${ }^{1 c, f, g}$ Usefulness of the building block 3a from the viewpoint of natural product synthesis was first demonstrated by the enantioselective synthesis of elemane sesquiterpenoids, $(+)-\beta$-elemenone and $(+)$ -eleman- $8 \beta, 12$-olide. ${ }^{1 f}$ As the next project, we planned chemical transformation of $\mathbf{3}$ into lobane diterpenes which possess commonly a novel prenylated elemane-carbon skeleton. ${ }^{2}$

Marine lobane diterpenes, for example, fuscol $4,{ }^{3}$ lobatriene 6^{4} and acetoxylobaoxide $7,{ }^{5}$ comprise a family of biologically active natural products. ${ }^{2 a}$ Among these, fuscol 4, isolated from the gorgonian Eunicea fusca, ${ }^{3 a}$ is representative, and its arabinose glycoside, fuscoside B 5, is known to be a potent topical antiinflammatory agent and a selective inhibitor of leucotriene synthesis. ${ }^{3 b}$ Their absolute stereostructures remained unknown. The first elegant asymmetric synthesis of 4 was recently accomplished by Yamada et al., ${ }^{6}$ thus indicating the absolute configuration of $\mathbf{4}$ to be $1 R, 2 R, 4 S$. However, this is a multi-step synthesis and suffers from a poor overall yield. As part of a synthetic study on lobane diterpenoids, we describe

here the more ready and efficient synthesis of (+)-fuscol 4 from 3b, that is, 10 steps and ca. 20% overall yield, although the present synthesis contains the same key intermediate that Yamada's synthesis has.

Results and discussion

Taking into account the absolute configuration of the target compound $\mathbf{4}$, we chose $(4 R, 5 R)-\mathbf{3 b}$ as the starting material in the present synthesis. Since an enol acetate function is synthetically equivalent to an enolate anion, this function could play an important role in the regioselective introduction of a carbon unit at the C-2 position of $\mathbf{3 b}$. In fact, ethoxycarbonylation of $\mathbf{3 b}$ on treatment with MeLi (2.0 equiv.) in THF followed by addition of ethyl cyanoformate in the presence of HMPA provided the β-keto ester $\mathbf{8}$ quantitatively in a regio- and stereo-selective fashion (Scheme 1). Sodium borohydride $\left(\mathrm{NaBH}_{4}\right)$ reduction of $\mathbf{8}$ gave a single hydroxy ester $\mathbf{9}$ by exclusive attack of a hydride from the less hindered β side. ${ }^{7}$ This was evidenced by the ${ }^{1} \mathrm{H}$ NMR analyses; the resonance arising from the proton on the carbon bearing the hydroxy group exhibits a singlet with half band width $\left(J_{1 / 2 \mathrm{H}} 8.2 \mathrm{~Hz}\right)$ at $\delta 4.33$, indicating that the configuration of the hydrogen atom is equatorial. In addition, comparison of the chemical shifts of the quaternary methyl group ($\delta 1.04$ for $\mathbf{8}$ and $\delta 1.24$ for 9) is indicative of the newly formed hydroxy group being axial; the cis relationship between the methyl and hydroxy groups in 9 causes the methyl protons to shift downfield by 0.20 ppm . Dehydration of 9 was carried out by a sequence of conventional reactions: mesylation with methanesulfonyl chloride in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ followed by treatment of the resulting mesylate with DBU in diethyl ether, gave the α, β-unsaturated ester $\mathbf{1 0}$ in 69% overall yield from 9. Chemical transformation of the ester

iii $\downarrow(69 \%)$

11
10
12
13

Scheme 1 Reagents and conditions: i, MeLi (2.1 equiv.), $\mathrm{NCCO}_{2} \mathrm{Et}$, THF-HMPA; ii, $\mathrm{NaBH}_{4}, \mathrm{EtOH}$; iii, $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$, then DBU; iv, (1) $\mathrm{KOH}, \mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$, (2) $\mathrm{MeLi}, \mathrm{Et}_{2} \mathrm{O}$; v, $\mathrm{LiAlH}_{4}, \mathrm{CuI}$, THF; vi, (1) $\mathrm{LiAlH}_{4}, \mathrm{CuI}$, THF, (2) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$
group in $\mathbf{1 0}$ into an acetyl group was performed by alkaline hydrolysis of $\mathbf{1 0}$, followed by treatment of the resulting carboxylic acid with MeLi, thus giving the enone 11 in 90% overall yield from 10.

With both unsaturated carbonyl compounds, 10 and 11, in hand, conjugate reduction of the α, β-unsaturated carbonyl functions was examined next. The most common method using Li metal in liquid NH_{3} was examined for the 1,4-reduction of 10. However, the reaction provided a mixture of a few products including the desired ester $\mathbf{1 4}$ whose yield was very low.

14
Attempted reduction of $\mathbf{1 0}$ with $\mathrm{NaBH}_{4}-\mathrm{NiCl}_{2}$ in ethanol ${ }^{8}$ proved to be fruitless because the resulting mixture was inseparable. Both $\mathbf{1 0}$ and $\mathbf{1 1}$ resisted palladium-catalyzed conjugate reduction with tributyltin hydride in THF, ${ }^{9}$ the starting materials being, for the most part, recovered.

Fortunately, the reagent, $\mathrm{LiAlH}_{4}-\mathrm{CuI},{ }^{10}$ was found to be an effective reductant for $\mathbf{1 1}$, giving a mixture (a $5: 3$ ratio) of the methyl ketone $\mathbf{1 2}$ and its epimer $\mathbf{1 3}$ in 83% combined yield. From the ${ }^{1} \mathrm{H}$ NMR studies, the stereochemistry of the hydrogen atoms on the carbon flanking the acetyl group in $\mathbf{1 2}$ and $\mathbf{1 3}$ were established to be equatorial and axial, respectively, on the basis of a singlet (a half band width, 10.8 Hz) at $\delta 2.65$ for the former and a broad singlet (a half band width, 18.9 Hz) at $\delta 2.42$ for the latter, these assignment indicating the stereostructures of $\mathbf{1 2}$ and $\mathbf{1 3}$ as depicted. The fact that the minor product $\mathbf{1 3}$ is a thermodynamically stable compound was evidenced by treatment of the above mixture of $\mathbf{1 2}$ and $\mathbf{1 3}$ with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol to give $\mathbf{1 3}(88 \%)$ as a result of facile epimerisation of 12, along with a very small amount of 12. Although the compound $\mathbf{1 3}$ obtained was the synthetic intermediate in the Yamada's fuscol synthesis, ${ }^{6}$ we could prepare this key intermediate in 5 steps and 38% overall yield from 3b.

It is worth mentioning that the physical data of the methyl ketone $\mathbf{1 3}$ agreed with those of a novel metabolite, lobocalone, obtained from the soft coral Lobophytum caledonense collected
in the South China Sea by Su et al. ${ }^{11}$ The relative stereostructure of this norsesquiterpene has been established from its spectral data. Agreement between the physical data of the natural and synthetic compounds including the sign of optical rotation indicates that the absolute stereochemistry of lobacalone is $1 S, 3 R, 4 R$.

The remaining task for the synthesis of fuscol 4 was chemical transformation of the acetyl function in $\mathbf{1 3}$ into the functionalised eight-carbon side chain, for which two synthetic routes were examined. The methyl ketone $\mathbf{1 3}$ was first treated with the lithium salt of 4 -(diethylphosphono)crotonate ${ }^{12}$ in THF (Scheme 2). Although the only product obtained was the

Scheme 2 Reagents and conditions: i, LDA, $(E)-(E t O)_{2} \mathrm{POCH}_{2}-$ $\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}$, THF; ii, $\mathrm{CH}_{2}=\mathrm{CHMgBr}$, THF; iii, $\mathrm{PCC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; iv, $\mathrm{NaH},\left(\mathrm{Pr}^{\mathrm{i} O}\right)_{2} \mathrm{POCH}_{2} \mathrm{CO}_{2} \mathrm{Me}, \mathrm{THF} ; \mathrm{v}, \mathrm{MeLi}, \mathrm{Et}_{2} \mathrm{O}$
desired conjugated diene ester 15 in which the geometry of the conjugated diene unit was E, E, the yield was disappointingly low (18%). This Horner-Wadsworth-Emmons condensation always resulted in more than 60% of unchanged 13. Attempted condensation using the sodium salt of this reagent (NaH in DME, DMF, or toluene) proved to be fruitless, these reactions giving recovery mostly of unchanged 13; this is probably because of the readily enolisable character of the methyl ketone function with a base.

As the second variant, we adopted a stepwise introduction of two kinds of the double bonds. Although a 5 -step transformation of $\mathbf{1 3}$ to the methyl ester $\mathbf{1 6}$ by use of Reformatsky condensation with methyl bromoacetate and zinc dust as the key reaction has already been reported by Yamada et al., ${ }^{6}$ we designed a 3 -step and more efficient construction of the penta-2,4-dienoate function in 13. Vinylation of $\mathbf{1 3}$ with the vinyl Grignard reagent in THF provided in nearly quantitative yield the allylic alcohol 17, whose oxidative rearrangement with $\mathrm{PCC}^{1 c, 13}$ smoothly gave the (E)- α, β-unsaturated aldehyde $\mathbf{1 8}$ and its (Z)-isomer 19 in 67 and 17% yields, respectively, together with a small amount of unchanged 17. Both aldehydes obtained are unstable, and gradually decomposed when stored at room temperature. Stereochemical assignment of the aldehydes was easily performed by a comparison of their ${ }^{1} \mathrm{H}$ NMR spectra; the chemical shift of the methyl protons of the butenal function in $\mathbf{1 8}$ shows considerable deshielding by the proximate carbonyl group, compared with that of $\mathbf{1 9}(\delta 2.20$ in $\mathbf{1 8}$ and $\delta 1.86$ in 19). Construction of the conjugated diene ester unit mentioned above was accomplished by treating the aldehyde $\mathbf{1 8}$ with the sodium salt of methyl diisopropylphosphonoacetate to give $\mathbf{1 6}$ in a high yield. No geometrical isomer of $\mathbf{1 6}$ could be detected in spite of a careful inspection of the reaction mixture.

Finally, treatment of $\mathbf{1 6}$ with an excess of MeLi according to a reported procedure ${ }^{6}$ led to (+)-fuscol 4, $[a]_{\mathrm{D}}+21.0\left(\mathrm{CHCl}_{3}\right)$, $\left\{\right.$ lit. $\left.[a]_{\mathrm{D}}+17.6\left(\mathrm{CHCl}_{3}\right)^{3 b}[a]_{\mathrm{D}}+17.4\left(\mathrm{CHCl}_{3}\right)^{6}\right\}$, quantitatively. The ${ }^{1} \mathrm{H}$ NMR (400 MHz), IR, and mass spectra of the synthetic 4 were superimposable with those of an authentic sample. ${ }^{6}$

In summary, as part of the enantioselective synthesis of lobane diterpenes from (+)-nopinone $\mathbf{1}$, the total synthesis of $(+)$-fuscol $\mathbf{4}$ from the enol acetate 3b was accomplished in 10 steps and $c a .20 \%$ overall yield in the present study. This overall yield is equivalent to $c a .8 \%$ on starting from 1. Since all of the lobane natural products possess commonly a prenylated elemane-carbon skeleton, as seen in the structures, 4-7, and since a set of compounds $\mathbf{3 a}, \mathbf{b}$ with respect to the absolute configuration of the target natural products are readily available from (+)-nopinone 1 , as aforementioned, it was demonstrated that the compounds $\mathbf{3 a , b}$ could serve as the versatile building blocks for the asymmetric synthesis of other lobane diterpenes.

Experimental

Melting points are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 400 MHz ; J values are given in Hz. [a] Values are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. All reactions were carried out under dry N_{2} or Ar atmosphere with use of standard procedures for the exclusion of moisture, except those in aqueous solutions. Dry tetrahydrofuran (THF) was obtained by distillation over sodium benzophenone ketyl. Other organic solvents were purified and dried by using standard procedure. Extracts obtained on aqueous work-up of the reaction mixtures were washed successively with water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, unless otherwise stated. Column and flash column chromatography were performed on 70-230 and 230-400 mesh silica gel (Merck), respectively. Medium-pressure chromatography (MPLC) utilized a 22 diam. 300 mm silica gel (10 $\mu \mathrm{m})$ column. Solvents for elution are shown in parentheses. Ether refers to diethyl ether.

Ethyl (1R,4R,5R)-5-isopropenyl-4-methyl-2-oxo-4-vinylcyclo-

 hexanecarboxylate 8To a stirred solution of MeLi in ether ($1.03 \mathrm{~m} ; 27.8 \mathrm{ml}$, 28.6 $\mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$ was added dropwise a solution of $\mathbf{3} \mathbf{b}^{1 \mathrm{c}}(97 \%$ ee, $2.96 \mathrm{~g}, 13.4 \mathrm{mmol}$) in THF (18 ml). Stirring was continued for an additional 1 h , after which the reaction mixture was treated dropwise with HMPA ($2.5 \mathrm{ml}, 13.7 \mathrm{mmol}$) followed by ethyl cyanoformate ($1.61 \mathrm{ml}, 16.3 \mathrm{mmol}$). The resulting reaction mixture was stirred for an additional 35 min after which it was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ether. Evaporation of the extract followed by chromatography of the residue on silica gel (hexane-EtOAc, $40: 1$) gave the title compound $8(3.17 \mathrm{~g}, 99 \%)$ as an oil, $[a]_{\mathrm{D}}^{26}-21.5$ (c 0.86 in CHCl_{3}) (Found: C, 71.84; H, 8.64. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}$ requires C, 71.97; H, 8.86%); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3083,1660,1621,1219,1062,914,895$ and $827 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.04(3 \mathrm{H}, \mathrm{s}), 1.31(3 \mathrm{H}, \mathrm{t}, J 7.2), 1.75(3 \mathrm{H}, \mathrm{s})$, $2.06(1 \mathrm{H}, \mathrm{d}, J 18.0), 2.16(1 \mathrm{H}, \mathrm{dd}, J 9.2,6.4), 2.27-2.40(2 \mathrm{H}, \mathrm{m})$, $2.45(1 \mathrm{H}, \mathrm{d}, J 18.0), 4.21(2 \mathrm{H}, \mathrm{m}), 4.77$ and $4.88(1 \mathrm{H}$, br s each $)$, 4.97 ($1 \mathrm{H}, \mathrm{d}, J 17.6$), $4.99(1 \mathrm{H}, \mathrm{d}, J 10.8), 5.79(1 \mathrm{H}, \mathrm{dd}, J 17.6$, $10.8)$ and $12.19(1 \mathrm{H}, \mathrm{s})$.

Ethyl ($1 R, 4 R, 5 R$)-2-hydroxy-5-isopropenyl-4-methyl-4-vinyl-

 cyclohexanecarboxylate 9To a stirred solution of $\mathbf{8}(3.12 \mathrm{~g}, 12.5 \mathrm{mmol})$ in ethanol $(15 \mathrm{ml})$ was added dropwise at $0^{\circ} \mathrm{C}$ a solution of $\mathrm{NaBH}_{4}(473 \mathrm{mg}, 12.5$ $\mathrm{mmol})$ in ethanol (15 ml). Stirring was continued for an additional 13 h , during which the reaction temperature rose slowly to room temperature. A few drops of aqueous acetic acid followed by water were added to the reaction mixture which was then extracted with CHCl_{3}. Evaporation of the extract followed by purification of the residue with chromatography on silica gel (hexane-EtOAc, 9:1) gave the title compound $9(2.24 \mathrm{~g}, 71 \%)$ as crystals, mp $57-59^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}^{26}+59.2$ (c 0.92 in CHCl_{3}) (Found:

C, $70.95 ; \mathrm{H}, 9.40 . \mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{3}$ requires $\mathrm{C}, 71.39 ; \mathrm{H}, 8.59 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3514,3078,1711,1636,1203,1145,1044$ and $904 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.24(3 \mathrm{H}, \mathrm{s}), 1.28(3 \mathrm{H}, \mathrm{t}, J 7.2), 1.52(1 \mathrm{H}, \mathrm{d}$, $J 15.2$), 1.67-1.79 ($2 \mathrm{H}, \mathrm{m}$), $1.74(3 \mathrm{H}, \mathrm{s}), 2.02(1 \mathrm{H}, \mathrm{dd}, J 12.9$, 2.9), 2.21 ($1 \mathrm{H}, \mathrm{dd}, J 13.2,13.2$), 2.47 (1 H , ddd, $J 12.9,3.6,2.7$), $3.15(1 \mathrm{H}, \mathrm{dd}, J 2.0,2.0), 4.18(2 \mathrm{H}, \mathrm{q}, J 7.2), 4.33\left(1 \mathrm{H}, \mathrm{s}, J_{12 \mathrm{H}}\right.$ $8.2), 4.65$ and $4.86(1 \mathrm{H}, \mathrm{s}$ each), $4.91(1 \mathrm{H}, \mathrm{d}, J 17.1), 4.92(1 \mathrm{H}$, d, $J 11.2$) and 5.75 (1H, dd, J 17.1, 11.2).

Ethyl ($4 R, 5 R$)-5-isopropenyl-4-methyl-4-vinylcyclohex-1-enecarboxylate 10

To a stirred solution of $9(1.01 \mathrm{~g}, 4.02 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.68$ $\mathrm{ml}, 12.1 \mathrm{mmol})$ in ether (10 ml) was added dropwise at $0{ }^{\circ} \mathrm{C}$ methanesulfonyl chloride ($0.6 \mathrm{ml}, 7.83 \mathrm{mmol}$). The reaction mixture was stirred for 3 h after which a solution of DBU (1.12 $\mathrm{ml}, 7.52 \mathrm{mmol}$) in ether (5 ml) was added to it. Stirring was continued for an additional 4 h after which the reaction mixture was quenched by the addition of water, and then extracted with ether. The oily residue obtained by evaporation of the extract was chromatographed on silica gel (hexane-EtOAc, 25:1) to give the title compound $\mathbf{1 0}$ ($652 \mathrm{mg}, 69 \%$) as an oil, $[a]_{D}^{22}-12.8$ (c 0.84 in CHCl_{3}) (Found: C, $76.80 ; \mathrm{H}, 9.25$. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$ requires C, $76.88 ; \mathrm{H}, 9.46 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3082$, 1713, 1655, 1638, 1247, 1087, 1048, 909 and $894 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $0.99(3 \mathrm{H}, \mathrm{s}), 1.30(3 \mathrm{H}, \mathrm{t}, J 7.2), 1.74(3 \mathrm{H}, \mathrm{s}), 2.03(1 \mathrm{H}, \mathrm{ddd}$, $J 19.3,4.2,2.4), 2.19$ (1 H , dd, $J 9.0,2.4$), 2.27-2.45 (3H, m), $4.20(2 \mathrm{H}, \mathrm{q}, J 7.2), 4.74$ and $4.87(1 \mathrm{H}, \mathrm{s}$ each $), 4.95(1 \mathrm{H}, \mathrm{d}$, $J 10.5), 4.97(1 \mathrm{H}, \mathrm{d}, J 17.6), 5.80(1 \mathrm{H}, \mathrm{dd}, J 17.6,10.5)$ and 6.95 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}$).

(4R,5R)-5-Isopropenyl-4-methyl-4-vinylcyclohexen-1-yl methyl ketone 11

To a stirred solution of $\mathbf{1 0}(2.14 \mathrm{~g}, 9.15 \mathrm{mmol})$ in ethanol (30 ml) was added aqueous $\mathrm{KOH}(3 \mathrm{~m}, 30 \mathrm{ml})$. The reaction mixture was gently refluxed for 1 h and then cooled to $0^{\circ} \mathrm{C}$ and made slightly acidic by the addition of aqueous $\mathrm{HCl}(2 \mathrm{~m})$ with stirring; it was then extracted with ether. The combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Filtration of the residue through a short silica gel column (ether) gave ($4 R, 5 R$)-5-isopropenyl-4-methyl-4-vinylcyclohex-1enecarboxylic acid (1.88 g , quant) as crystals, mp $108-109^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3200-2600,1685,1647,1279,961$ and 914; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.98(3 \mathrm{H}, \mathrm{s}), 1.74(3 \mathrm{H}, \mathrm{s}), 2.05(1 \mathrm{H}, \mathrm{dd}, J 18.8,4.4)$, $2.19(1 \mathrm{H}, \mathrm{dd}, J 8.8,2.0), 2.30-2.45(3 \mathrm{H}, \mathrm{m}), 4.74$ and $4.87(1 \mathrm{H}, \mathrm{s}$ each $), 4.95(1 \mathrm{H}, \mathrm{d}, J 17.8), 4.96(1 \mathrm{H}, \mathrm{d}, J 10.4)$ and $5.79(1 \mathrm{H}, \mathrm{dd}$, $J 17.8,10.4)$.

A stirred solution of the carboxylic acid obtained above in THF (40 ml) was cooled to $0^{\circ} \mathrm{C}$ after which a solution of MeLi in ether ($1.04 \mathrm{~m} ; 18 \mathrm{ml}, 18.72 \mathrm{mmol}$) was added dropwise to it; stirring was then continued for 40 min . Aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added to the reaction mixture which was then extracted with ether. Evaporation of the extract followed by purification of the residue with chromatography on silica gel (hexane-ether, 9:1) gave the title compound $11(1.69 \mathrm{~g}, 90 \%)$ as an oil, $[a]_{\mathrm{D}}^{23}$ -18.2 (c 0.45 in CHCl_{3}) (Found: C, 81.92; H, 9.82. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}$ requires C, $82.30 ; \mathrm{H}, 9.87 \%$); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3082,1667,1645$, 1244 and $893 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.98(3 \mathrm{H}, \mathrm{s}), 1.74(3 \mathrm{H}, \mathrm{s}), 2.10(1 \mathrm{H}$, ddd, J 14.1, 4.9, 2.8), 2.16 (1H, dd, $J 9.6,5.6$), 2.25-2.45 (3H, $\mathrm{m}), 2.31(3 \mathrm{H}, \mathrm{s}), 4.72$ and $4.86(1 \mathrm{H}, \mathrm{s} \mathrm{each}), 4.97(1 \mathrm{H}, \mathrm{dd}, J 17.8$, $0.9), 4.98(1 \mathrm{H}, \mathrm{dd}, J 10.4,0.9), 5.80(1 \mathrm{H}, \mathrm{dd}, J 17.8,10.4)$ and $6.86(1 \mathrm{H}, \mathrm{br}$ s).
($1 R, 4 R, 5 R$)-5-Isopropenyl-4-methyl-4-vinylcyclohexan-1-yl methyl ketone 12 and ($1 S, 4 R, 5 R$)-5-isopropenyl-4-methyl-4-vinylcyclohexan-1-yl methyl ketone 13
To a stirred mixture of $\mathrm{CuI}(5.68 \mathrm{~g}, 29.8 \mathrm{mmol})$ and THF (60 $\mathrm{ml})$ was added dropwise at $0{ }^{\circ} \mathrm{C}$ a solution of LiAlH_{4} in THF $(1.0 \mathrm{~m} ; 7.44 \mathrm{ml}, 7.44 \mathrm{mmol})$. Stirring was continued for 10 min after which the reaction mixture, was treated with a solution of $11(1.52 \mathrm{~g}, 7.42 \mathrm{mmol})$ in THF (15 ml), added dropwise; stirring
was then continued for an additional 1 h . After this the reaction mixture was quenched by addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ to afford a precipitate, which was filtered off through a pad of Celite 545 with ether. The combined filtrates were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Chromatography of the residue on silica gel (hexane-ether, 9:1) gave a mixture of $\mathbf{1 2}$ and $13(1.26 \mathrm{~g}, 83 \%)$ in a $5: 3$ ratio (from MPLC). The title compounds $\mathbf{1 2}$ and 13 were obtained in a pure form by purification of a part of the above mixture with MPLC (hexane-EtOAc, 6:1). Compound 12: an oil, $[a]_{\mathrm{D}}^{22}+20.4$ (c 0.32 in CHCl_{3}) (Found: C, 81.21; H, 10.66. $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}$ requires $\mathrm{C}, 81.50 ; \mathrm{H}$, $10.75 \%) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3082,1709,1636,908$ and 892 $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.00(3 \mathrm{H}, \mathrm{s}), 1.28(1 \mathrm{H}$, ddd, $J 13.4,4.0,4.0), 1.53$ (1 H, ddd, $J 13.4,13.4,4.0$), 1.65-1.75 ($1 \mathrm{H}, \mathrm{m}$), 1.71 (3H, s), $1.82-2.05(4 \mathrm{H}, \mathrm{m}), 2.16(3 \mathrm{H}, \mathrm{s}), 2.65\left(1 \mathrm{H}, \mathrm{s}, J_{12 \mathrm{H}} 10.8\right), 4.62$ and $4.86(1 \mathrm{H}, \mathrm{s}$ each $), 4.87(1 \mathrm{H}, \mathrm{d}$ with fine splittings, $J 17.8)$, $4.88(1 \mathrm{H}, \mathrm{d}$ with fine splittings, $J 10.4)$ and $5.75(1 \mathrm{H}, \mathrm{dd}, J 17.8$, 10.4). Compound 13: an oil, $[a]_{\mathrm{D}}^{22}+31.3$ (c 0.52 in MeOH$)$ $\left\{\right.$ lit. ${ }^{11}[a]_{\mathrm{D}}^{20}+18.5$ (c 0.13 in MeOH) \} (Found: C, 81.13; H, 10.57. $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}$ requires C, $\left.81.40 ; \mathrm{H}, 10.75 \%\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-1}$ $3082,1710,1637,908$ and $898 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.00(3 \mathrm{H}, \mathrm{s}), 1.46-$ $1.62(3 \mathrm{H}, \mathrm{m}), 1.67-1.82(3 \mathrm{H}, \mathrm{m}), 1.71(3 \mathrm{H}, \mathrm{s}), 2.00(1 \mathrm{H}$, ddd $J 15.7,6.8,6.8), 2.16(3 \mathrm{H}, \mathrm{s}), 2.42\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, J_{1 / 2 \mathrm{H}} 18.9\right), 4.61$ and $4.85(1 \mathrm{H}$, s each $), 4.91(1 \mathrm{H}, \mathrm{d}$ with fine splittings, $J 17.8)$, $4.92(1 \mathrm{H}, \mathrm{d}$ with fine splittings, $J 10.4)$ and $5.79(1 \mathrm{H}, \mathrm{dd}, J 17.8$, 10.4).

Treatment of the mixture, 12 and 13 , with a base

A suspension of a mixture of $\mathbf{1 2}$ and $\mathbf{1 3}(1.08 \mathrm{~g}, 5.23 \mathrm{mmol})$, $\mathrm{K}_{2} \mathrm{CO}_{3}(1.45 \mathrm{~g}, 10.5 \mathrm{mmol})$ and methanol (15 ml) was stirred for 15 h at room temperature after which most of the solvent was evaporated under reduced pressure. The residue was diluted with water and then extracted with ether. Evaporation of the extract left an oily residue which was purified by MPLC (hexane-EtOAc, 6:1) to give $\mathbf{1 3}(952 \mathrm{mg}, 88 \%$), together with a small amount of $\mathbf{1 2}$.

2-[(1R,4R,5R)-5-Isopropenyl-4-methyl-4-vinylcyclohex-1-yl]but-3-en-2-ol 17

To a stirred solution of $\mathbf{1 3}(948 \mathrm{mg}, 4.60 \mathrm{mmol})$ in THF (15 ml) was added dropwise at $0^{\circ} \mathrm{C}$ a solution of vinylmagnesium bromide in THF ($0.97 \mathrm{~m} ; 9.5 \mathrm{ml}, 9.2 \mathrm{mmol}$). Stirring was continued for 1.5 h after which the mixture was treated with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ether. Evaporation of the extract followed by chromatography of the residue on silica gel (hexane-ether, 4:1) gave the title compound $17(1.06 \mathrm{~g}, 97 \%)$ as an oil, $[a]_{\mathrm{D}}^{23}+12.0$ (c 0.22 in CHCl_{3}) (Found: C, 81.81; H, 11.13. $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}$ requires $\left.\mathrm{C}, 81.99 ; \mathrm{H}, 11.18 \%\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ 3082, 1636, 999 and $909 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.97(3 \mathrm{H}, \mathrm{s}), 1.28(3 \mathrm{H}, \mathrm{s})$, $1.23-1.35(1 \mathrm{H}, \mathrm{m}), 1.37-1.45(5 \mathrm{H}, \mathrm{m}), 1.58-1.67(2 \mathrm{H}, \mathrm{m}), 1.70$ $(3 \mathrm{H}, \mathrm{s}), 1.93(1 \mathrm{H}, \mathrm{m}), 4.58$ and $4.81(1 \mathrm{H}, \mathrm{s}$ each $), 4.80(1 \mathrm{H}, \mathrm{d}$, $J 12.0), 4.90(1 \mathrm{H}, \mathrm{d}, J 17.0), 5.08(1 \mathrm{H}, \mathrm{dd}, J 10.7,1.2), 5.23(1 \mathrm{H}$, dd, $J 17.4,1.2), 5.80(1 \mathrm{H}, \mathrm{dd}, J 17.4,10.7)$ and $5.94(1 \mathrm{H}, \mathrm{dd}$, J 17.0, 12.0).

(E)-3-[($1 R, 4 R, 5 R)$-5-Isopropenyl-4-methyl-4-vinylcyclohex-1-

 yl]but-2-enal 18 and (Z)-3-[($1 R, 4 R, 5 R$)-5-isopropenyl-4-methyl-4-vinylcyclohexan-1-yl]but-2-enal 19To a stirred mixture of PCC ($2.68 \mathrm{~g}, 12.4 \mathrm{mmol}$), Celite 545 (ca. $1.2 \mathrm{~g})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ was added at room temperature a solution of $\mathbf{1 7}(902 \mathrm{mg}, 3.55 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$. Stirring was continued for 17 h after which the reaction mixture was diluted with ether (60 ml) and filtered to remove solids. The combined filtrates were washed successively with aqueous NaHSO_{3}, aqueous CuSO_{4}, water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to afford an oily residue. This was purified by MPLC (hexane-ether, 3:1) to give the title compounds 18 (594 $\mathrm{mg}, 67 \%)$ and $19(152 \mathrm{mg}, 17 \%)$. Compound 18, an oil, $[a]_{\mathrm{D}}^{22}+34.8$ (c 0.49 in CHCl_{3}) [Found (HRMS,EI): M^{+}, 232.1834. $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}$ requires $\left.M, 232.1826\right]$; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3082$,

1674, 1634 and $893 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.02(3 \mathrm{H}, \mathrm{s}), 1.47-1.66(6 \mathrm{H}, \mathrm{m})$, $1.72(3 \mathrm{H}, \mathrm{s}), 2.04(1 \mathrm{H}, \mathrm{dd}, J 11.7,4.4), 2.07-2.18(1 \mathrm{H}, \mathrm{m}), 2.20$ $(3 \mathrm{H}, \mathrm{s}), 4.59$ and $4.84(1 \mathrm{H}, \mathrm{s}$ each $), 4.92(1 \mathrm{H}, \mathrm{d}, J 17.8), 4.92$ ($1 \mathrm{H}, \mathrm{d}, J 10.4$), $5.81(1 \mathrm{H}, \mathrm{dd}, J 17.8,10.4), 5.93(1 \mathrm{H}, \mathrm{d}, J 8.1)$ and $10.05(1 \mathrm{H}, \mathrm{d}, J 8.1)$. Compound 19, an oil, $[a]_{\mathrm{D}}^{24}-32.8$ (c 0.34 in CHCl_{3}) [Found (HRMS,EI): $\mathrm{M}^{+}, 232.1826 . \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}$ requires M, 232.1826]; $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3080,1685,1631$ and $909 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.04(3 \mathrm{H}, \mathrm{s}), 1.35-1.55(6 \mathrm{H}, \mathrm{m}), 1.66-1.75(1 \mathrm{H}$, $\mathrm{m}), 1.72(3 \mathrm{H}, \mathrm{s}), 1.86(3 \mathrm{H}, \mathrm{s}), 2.09(1 \mathrm{H}, \mathrm{dd}, J 12.8,3.2), 4.60$ and $4.85(1 \mathrm{H}$, s each $), 4.92(1 \mathrm{H}, \mathrm{d}, J 17.8), 4.93(1 \mathrm{H}, \mathrm{d}, J 10.4), 5.83$ $(1 \mathrm{H}, \mathrm{dd}, J 17.8,10.4), 5.84(1 \mathrm{H}, \mathrm{d}, J 8.0)$ and $10.07(1 \mathrm{H}, \mathrm{d}$, $J 8.0$).

Ethyl (2E,4E)-5-[(1R,4R,5R)-5-isopropenyl-4-methyl-4-vinyl-cyclohexan-1-yl]hexa-2,4-dienoate 15

To a stirred solution of diisopropylamine $(58.6 \mu 1,0.42 \mathrm{mmol})$ in THF (0.3 ml) was added dropwise at $0^{\circ} \mathrm{C}$ a solution of BuLi in hexane $(1.66 \mathrm{~m} ; 0.23 \mathrm{ml}, 0.38 \mathrm{mmol})$. The resulting mixture was stirred for 30 min , and then cooled at $-78^{\circ} \mathrm{C}$. After this, a solution of ethyl 4-(diethylphosphono)crotonate ${ }^{12}$ ($92 \mathrm{mg}, 0.34$ $\mathrm{mmol})$ in THF $(0.7 \mathrm{ml})$ was added to the mixture which was then stirred at $-40^{\circ} \mathrm{C}$ for 1 h ; it was then treated with a solution of $\mathbf{1 3}(24 \mathrm{mg}, 0.17 \mathrm{mmol})$ in THF (1 ml). Stirring was continued for an additional 6 h , while the reaction temperature rose slowly to room temperature. The reaction mixture was quenched with water, and extracted with ether. Evaporation of the extract left an oily residue which was purified by MPLC (hexane-EtOAc, $20: 1)$ to give the title compound $\mathbf{1 5}(9 \mathrm{mg}, 18 \%)$ and recovered 13 ($18 \mathrm{mg}, 56 \%$). Compound 15, an oil, $[a]_{\mathrm{D}}^{24}+27.7$ (c 0.51 in CHCl_{3}) (Found: $\mathrm{C}, 79.29 ; \mathrm{H}, 9.73 . \mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{2}$ requires C , $79.42 ; \mathrm{H}, 10.00 \%$); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3082,1715,1635,1274$, $1128,1042,979$ and $891 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.02(3 \mathrm{H}, \mathrm{s}), 1.30(3 \mathrm{H}, \mathrm{t}$, $J 7.2), 1.43-1.66(6 \mathrm{H}, \mathrm{m}), 1.71(3 \mathrm{H}, \mathrm{s}), 1.91(3 \mathrm{H}, \mathrm{s}), 2.02(1 \mathrm{H}$, dd, $J 12.5,3.6), 2.02-2.15(1 \mathrm{H}, \mathrm{m}), 4.20(2 \mathrm{H}, \mathrm{q}, J 7.2), 4.59$ and $4.83(1 \mathrm{H}, \mathrm{s}$ each $), 4.91(1 \mathrm{H}, \mathrm{d}, J 17.6), 4.91(1 \mathrm{H}, \mathrm{d}, J 10.4), 5.80$ ($1 \mathrm{H}, \mathrm{d}, J 15.1$), $5.81(1 \mathrm{H}, \mathrm{dd}, J 17.6,10.4), 6.04(1 \mathrm{H}, \mathrm{d}, J 11.6)$ and $7.61(1 \mathrm{H}, \mathrm{dd}, J 15.1,11.6)$.

Methyl (2E,4E)-5-[(1R,4R,5R)-5-isopropenyl-4-methyl-4-vinyl-cyclohexan-1-yl]hexa-2,4-dienoate 16

To a stirred suspension of $\mathrm{NaH}(153 \mathrm{mg}, 3.83 \mathrm{mmol})$ in THF (2 ml) was added at $0^{\circ} \mathrm{C}$ a solution of methyl (diisopropylphosphono) acetate ($1.31 \mathrm{~g}, 5.48 \mathrm{mmol}$) in THF (3 ml). Stirring was continued for 30 min after which the reaction mixture was treated with a solution of $\mathbf{1 8}(443 \mathrm{mg}, 1.91 \mathrm{mmol})$ in THF (5 $\mathrm{ml})$, added dropwise. The resulting mixture was stirred for an additional 40 min after which it was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with ether. Evaporation of the extract followed by purification of the oily residue with MPLC (hexane-ether, $4: 1$) gave the title compound $\mathbf{1 6}(474 \mathrm{mg}, 86 \%)$ as an oil, $[a]_{\mathrm{D}}^{22}+29.8$ (c 0.25 in CHCl_{3}) (Found: C, $78.73 ; \mathrm{H}$, 9.76. $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $\left.\mathrm{C}, 79.12 ; \mathrm{H}, 9.79 \%\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $3081,1715,1634,1274,1147,1013,979$ and $891 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $1.02(3 \mathrm{H}, \mathrm{s}), 1.45-1.67(6 \mathrm{H}, \mathrm{m}), 1.71(3 \mathrm{H}, \mathrm{s}), 1.91(3 \mathrm{H}, \mathrm{s}), 2.01$ $(1 \mathrm{H}, \mathrm{dd}, J 12.5,3.6), 2.02-2.15(1 \mathrm{H}, \mathrm{m}), 3.74(3 \mathrm{H}, \mathrm{s}), 4.59$ and $4.83(1 \mathrm{H}, \mathrm{s}$ each $), 4.91(1 \mathrm{H}, \mathrm{d}, J 17.6), 4.92(1 \mathrm{H}, \mathrm{d}, J 10.4), 5.80$ ($1 \mathrm{H}, \mathrm{d}, J 15.1$), $5.81(1 \mathrm{H}, \mathrm{dd}, J 17.6,10.4), 6.03(1 \mathrm{H}, \mathrm{d}, J 11.6)$ and $7.62(1 \mathrm{H}, \mathrm{dd}, J 15.1,11.6)$.

(+)-Fuscol 4

Following the procedure described for the synthesis of $\mathbf{4}$ from 16 by Yamada et al., ${ }^{6}$ a solution of $16(20 \mathrm{mg}, 0.068 \mathrm{mmol})$ in THF (2 ml) was treated at $0^{\circ} \mathrm{C}$ with a solution of MeLi in ether $(1.04 \mathrm{~m} ; 0.26 \mathrm{ml}, 0.27 \mathrm{mmol})$ to give the title compound $4(20$ mg , quant), $[\alpha]_{\mathrm{D}}^{22}+21.0$ ($c 0.31$ in CHCl_{3}) \{lit., $[\alpha]_{\mathrm{D}}+17.6$ (c 0.9 in $\left.\left.\mathrm{CHCl}_{3}\right){ }^{3 b}[a]_{\mathrm{D}}+17.4\left(c 0.16, \mathrm{CHCl}_{3}\right)^{6}\right\}$ whose spectral data (${ }^{1} \mathrm{H}$ NMR, IR and mass) were identical with those of an authentic sample. ${ }^{6}$ Similarly, reaction of $\mathbf{1 5}(5 \mathrm{mg}, 0.02 \mathrm{mmol})$ in THF (1 ml) with a solution of MeLi in ether $(1.04 \mathrm{~m} ; 0.05 \mathrm{ml}$, $0.05 \mathrm{mmol})$ provided the title compound $4(4 \mathrm{mg}, 90 \%)$.

Acknowledgements

We are grateful to Professors Y. Yamada (Tokyo University of Pharmacy and Life Science) and J. Su (Zhongshan University, China) for the spectrum of fuscol and spectral data for lobocalone, respectively

References

1 (a) H. Kosugi, J. Sugiura and M. Kato, Chem. Commun., 1996, 1743; (b) M. Kato, F. Kido, M. Watanabe, Y. Masuda and B. Z. Awen J. Chem. Soc., Perkin Trans. 1, 1993, 2831; (c) M. Watanabe, B. Z Awen and M. Kato, J. Org. Chem., 1993, 58, 3923; (d) M. Kato, M. Watanabe, Y. Tooyama, B. Vogler and A. Yoshikoshi, Synthesis, 1992, 1055; (e) M. Kato, F. Kido, Y. Masuda and M. Watanabe, J. Chem. Soc., Chem. Commun., 1992, 697; (f) M. Kato, M. Watanabe, B. Vogler, B. Z. Awen, Y. Masuda, Y. Tooyama and A. Yoshikoshi, J. Org. Chem., 1991, 56, 7071; (g) M. Kato, V. P. Kamat, Y. Tooyama and A. Yoshikoshi, J. Org. Chem., 1989, 54, 1536.

2 (a) R. W. Dunlop and R. Wells, J. Aust. J. Chem., 1979, 32, 1345; (b) D. J. Faulkner, Nat. Prod. Rep., 1994, 355.

3 (a) Y. Gopichand and F. J. Schmitz, Tetrahedron Lett., 1978, 3641; (b) J. Shin and W. Fenical, J. Org. Chem., 1991, 56, 3153

4 T. Kusumi, T. Hamada, M. O. Ishitsuka, I. Ohtani and H. Kakisawa, J. Org. Chem., 1992, 57, 1033.

5 J. Y. Su, Y. L. Zhong and L. M. Zeng, Chinese J. Chem., 1992, 10, 155.

6 M. Iwashima, H. Nagaoka, K. Kobayashi and Y. Yamada, Tetrahedron Lett., 1992, 33, 81.
7 For an analogous reduction, see reference $1(f)$.
8 T. Satoh, K. Nanba and S. Suzuki, Chem. Pharm. Bull., 1971, 19, 817.

9 E. Keinan and P. A. Gleize, Tetrahedron Lett., 1982, 23, 477.
10 E. C. Ashby, J. J. Lin and R. Kovar, J. Org. Chem., 1979, 44, 1939
11 J. Su, Y. Meng, L. Zeng and Q. Wang, Goodeng Xuexiao Huaxue Xuebao, 1992, 13, 1546 (Chem. Abstr., 1993, 119, 91 587).
12 (a) R. S. Ruden and L. Combie, J. Chem. Soc., 1969, 2477; (b) F. Bohlmann and C. Zdero, Chem. Ber., 1973, 106, 3779.

13 W. G. Dauben and D. M. Michno, J. Org. Chem., 1977, 42, 682.

Paper 7/06162E
Received 22nd August 1997
Accepted 17th September 1997

